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BFGS Method: A New Search Direction 
(Kaedah BFGS: Arah Carian Baharu)
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ABSTRACT

In this paper we present a new line search method known as the HBFGS method, which uses the search direction of the 
conjugate gradient method with the quasi-Newton updates. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is 
used as approximation of the Hessian for the methods. The new algorithm is compared with the BFGS method in terms 
of iteration counts and CPU-time. Our numerical analysis provides strong evidence that the proposed HBFGS method is 
more efficient than the ordinary BFGS method. Besides, we also prove that the new algorithm is globally convergent.
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 ABSTRAK

Dalam kertas ini kami berikan suatu kaedah carian yang baru dikenali sebagai kaedah HBFGS yang menggunakan arah 
carian kaedah kecerunan konjugat dengan kemaskini kuasi-Newton. Kemaskini Broyden-Flecther-Goldfarb-Shanno 
(BFGS) digunakan sebagai formula untuk penghampiran kepada Hessian bagi kedua-dua kaedah. Algoritma baru 
dibandingkan dengan kaedah kuasi-Newton dalam aspek bilangan lelaran dan juga masa CPU. Keputusan berangka 
menunjukkan bahawa kaedah HBFGS adalah lebih baik jika dibandingkan dengan kaedah BFGS yang asal. Selain itu, 
kami juga membuktikan bahawa algoritma baru ini adalah bertumpuan secara sejagat.

Kata kunci: Bertumpuan sejagat; kaedah BFGS; kaedah HBFGS; kaedah kecerunan konjugat

INTRODUCTION

Quasi-Newton methods are well-known methods in solving 
unconstrained optimization problems. These methods, 
which use the updating formulas for approximation of 
the Hessian, were introduced by Davidon in 1959, and 
later popularised by Fletcher and Powell in 1963 to give 
the Davidon-Fletcher-Powel (DFP) method. But the DFP 
method is rarely used nowadays. On the other hand, in 
1970 Broyden, Fletcher, Goldfarb and Shanno developed 
the idea of a new updating formula, known as BFGS, which 
has become widely used and recently the subject of many 
modifications. 
	 In general, the unconstrained optimization problems 
are described as follows:

	 	 (1)

where Rn is an n-dimensional Euclidean space and 
f : Rn →R  is assumed to be continuously twice 
differentiable. The gradient and Hessian for (1) are 
denoted as g and G, respectively. In order to display 
the updated formula of BFGS, the step-vectors sk and 
yk are defined as:

	
								      
	 	  
	 (2)

	 In this paper, whenever quasi-Newton methods are 
concerned, we will focus on the BFGS method which 
has proved to be the most effective of all quasi-Newton 
methods. Hence, if Bk is denoted as an approximation of 
Hessian G at xk, the updating formula for BFGS is,

	 	
			 

 	 (3)

	 It’s also well known that the matrix Bk+1 is generated 
by (3) to satisfy the secant equation 

	 Bk+1 sk = yk,	 (4)

which may be regarded as an approximate version of the 
Newton relation. Note that it is only possible to fulfill the 
secant equation if

	 	  (5)

which is known as the curvature condition. It is also worth 
mentioning that having (5) holds would ensure that the 
BFGS updating matrix (3) is positive definite.
	 During the last few decades, the convergences of 
the quasi-Newton methods have received much study. 
Powell (1976) has proved the global convergence of the 
BFGS method with the practical Wolfe line search in the 
case when the f is convex. His results have been extended 
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to the restricted Broyden’s family, except the DFP method 
by Byrd et al. (1987). The question whether the BFGS 
method and other quasi-Newton methods are globally 
convergent for general objective functions has been open 
for several decades until quite recently, when Dai (2002) 
and Mascarenhas (2004) gave a negative answer by 
providing counter-examples independently.
	 Realising the possible non-convergence for general 
objective functions, some authors have considered 
modifying quasi-Newton methods to enhance the 
convergence. For example, Li and Fukushima (2001) 
modify the BFGS method by skipping the update when 
certain conditions are not satisfied and prove the global 
convergence of the resulted BFGS method with a ‘cautious 
update’ (which is called the CBFGS method). However, 
their numerical tests showed that the CBFGS method did 
not perform better than the ordinary BFGS method. Then, 
Mustafa et al. (2009) proposed a new search direction 
for quasi-Newton methods in solving unconstrained 
optimization problems. Generally, the search direction 
focused on the hybridization of quasi-Newton methods 
with the steepest descent method. The search direction 
proposed by Mustafa et al. (2009) is dk = –ηBk

–1gk – δgk, 
where η > 0 and l > 0. They realised that the hybrid method 
is more effective compared with the ordinary BFGS in terms 
of computational cost. Hence, the delicate relationships 
between the conjugate gradient method and the BFGS 
method have been explored in the past. Two competing 
algorithms of this type are the L-BFGS method described by 
Nocedal (1980) and the variable storage conjugate gradient 
(VSCG) method published by Buckley and LeNir (1983).
	 In this paper, motivated by the idea of conjugate 
gradient methods, we proposed a line search algorithm for 
solving (1), where the search direction of the quasi-Newton 
methods will be modified using the search direction of 
the conjugate gradient method approach. We prove that 
our algorithm with the Wolfe line search is globally 
convergent for general objective function. Then, we test 
the new approach on standard test problems, comparing 
the numerical results with the results of applying the quasi-
Newton methods to the same set of test problems.

METHODS

The iterative method is used to solve unconstrained 
optimization problems in order to get the minimal value 
of the function where the gradient is 0. Hence, the iterative 
formula for the quasi-Newton methods will be defined as

	 xk+1 = xk + akdk,	  (6)

where the ak and dk denote the step size and the search 
direction, respectively. The step size must always have a 
positive value such that f (x) is sufficiently reduced. The 
success of a line search depends on the effective choices 
of both the search direction dk and the step size ak. There 
are a lot of formulas in calculating the step size, which are 
divided into an exact line search and an inexact line search. 

	 The ideal choice would be the exact line search 
formula, which is defined as ak = arg min(f (xk + αkdk) 
α>0,  but in general it is too expensive to identify this 
value. Generally, it requires too many evaluations of the 
objective function f and also its gradient g. The inexact 
line search has a few formulas which have been presented 
by previous researchers, such as the Armijo line search 
(Armijo 1966), Wolfe Condition (Wolfe 1969, 1971) 
and Goldstein Condition (Goldstein 1965). Shi (2006) 
claimed that among several well-known inexact line search 
procedures, the Armijo line search is the most useful and 
the easiest to implement in the computational calculation. 
It is also easy to implement it in programming like Matlab 
and Fortran. The Armijo line search is described as follows:
	 Given  s > 0, λ ∈ (0,1) σ ∈ (0,1) and  αi = max{s, sλ, 
sλ2, …} such that

	 f (xk) – f (xk + akdk) ≥ – σαkgk
Tdk,	  (7)

k = 0, 1, 2, 3, … . The reduction in f should be proportional 
to both the step size and directional derivative gk

Tdk. 
	 The search directions are also important in order 
to determine the value of f, which decreases along the 
direction. Moreover, the search direction of the quasi-
Newton methods often has the form

	 dk = –Bk
–1gk,	 (8)

where Bk is a symmetric and nonsingular matrix of 
approximation of the Hessian (3). Initial matrix B0 is chosen 
by an identity matrix which subsequently is updated by 
an update formula. When d1 is defined by (8) and Bk is a 
positive definite, we have dk

T = –gk
TBk

–1gk < 0, and therefore 
dk is a descent direction. Hence, the algorithm for an 
iteration method of ordinary BFGS is described as follows:

Algorithm 1 (BFGS method)
Step 0.	 Given a starting point x0 and B0 = In.  Choose 

values for s, β, and σ. 
Step 1.	 Terminate if  
Step 2.	 Calculate the search direction by (8).
Step 3.	 Calculate the step size α1 by (7).
Step 4.	 Compute the difference  sk = xk+1 – xk and yk + 

gk+1 – gk.
Step 5.	 Update Bk by (3) to obtain Bk+1. 
Step 6.	 Set k = k + 1 and go to Step 1.

A NEW SEARCH DIRECTION

In this section, we will discuss the new search direction 
for the quasi-Newton methods, which will be proposed by 
using the concept of the conjugate gradient method. The 
search direction of conjugate gradient method is: 

	 	 (9)
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where β1 is a coefficient of the conjugate gradient method. 
To incorporate more curvature information to the conjugate 
gradient direction, Birgin and Martinez (2001) proposed 
to scale the search direction (more precisely, on the 
steepest descent part –gk) by some Rayleigh quotient of the 
local Hessian, which gives arise a new class of methods 
called spectral conjugate gradient methods. Surprisingly, 
the spectral conjugate gradient methods outperform 
sophisticated conjugate gradient algorithms in many 
problems. The numerical results in Birgin and Martinez 
(2001) and Zhang et al. (2006) suggested that spectral 
gradient and conjugate gradient ideas could be combined in 
order to obtain even more efficient algorithms. Motivated 
by this fact, we attempt to employ the well-known BFGS 
updating matrix, which would carry better spectral 
information so that the concept of the conjugate gradient 
method’s search direction will be implemented into a new 
search, known as the HBFGS method and is given by, 

	 	 (10)

where Bk is the BFGS updating matrix and λk = ηgk
Tgk/gk

Tdk–1  with η ∈ (0,1]  is chosen to ensure conjugacy. With these 
considerations in mind, we shall now propose the algorithm 
for the HBFGS method as follows:

Algorithm 2 (HBFGS method)
Step 0.	 Given a starting point x0  and B0 = In. Choose 

values for s, β and σ. 
Step 1.	 Terminate if 
Step 2. 	 Calculate the search direction by (10).
Step 3. 	 Calculate the step size αk by (7).
Step 4.	 Compute the difference sk = xk+1 – xk and yk = gk+1 

– gk.
Step 5. 	 Update Bk by (3) to obtain Bk+1. 
Step 6. 	 Set k = k +1 and go to Step 1.

	 Based on Algorithms 1 and 2, we assume that every 
search direction dk satisfied the descent condition 

	 gk
Tdk < 0,	 (11)

for all k ≥ 0. If there exists a constant c1 > 0 such that 

	 gk
Tdk ≤ 	  (12)

for all k ≥ 0 , then the search directions satisfy the sufficient 
descent condition which can be proven in Theorem 3.2. 
Hence, we make a few assumptions based on the objective 
function.

Assumption 3.1
H1:	 The objective function f is twice continuously 

differentiable.
H2:	 The level set L is convex. Moreover, positive 

constants c1 and c2 exist, satisfying 

	 	 (13)

	 for all z ∈ Rn and x ∈ L, where F(x) is the Hessian 
matrix for f.

H3:	 The Hessian matrix is Lipschitz continuous at the 
point x*, that is, the positive constant c3 exists, 
satisfying

	 	 (14)

	 for all x in a neighbourhood of x*.

	 If the sequences {xk} are converging to a point x*, it 
is to be expected that y1 is approximately equal to G(x*)sk. 

Theorem 3.1 (Byrd & Nocedal 1989) 
Let {Bk} e generated by the BFGS formula (3), where B1 is 
symmetric and positive definite, and where yk

Tsk > 0  for 
all k. Furthermore, assume that {sk} and {yk} are such that

	
				  

for some symmetric and positive definite matrix G(x*)  and 
for some sequence {εk} with the property   Then

	 	 (15)

and the sequences   or  are bounded.

Theorem 3.2 
Suppose that Assumption 3.1 and Theorem 3.1 hold. Then, 
condition (12) holds for all k ≥ 0. 

Proof:
From (10), we see that

	
	

and using the Cauchy inequality, we get

	

where c1 = –(δk + η)
 
which is bounded away from zero. 

Hence, (12) holds and the proof is completed. 

Lemma 3.1
Under Assumption 3.1, positive constants c2 and  exist 
such that for any xk and any dk with gk

Tdk < 0, the step size 
ak, produced by Algorithm 2, will satisfy either, 
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	 	 (16)

or

	

Proof:
Suppose that ak < 1, which means that (7) failed for step 
size á ≤ ak/τ:

	 	 (17) 

Then, using the mean value theorem we obtain

	

where   for some  Now, by the 
Cauchy-Schwartz inequality, we get

	

Thus from H3 

	

which implies that

	

Substituting this into (17), we have

	

where c6 = τ(1 – ϖ)/M, which gives (16).		
	

Theorem 3.3 (Global convergence)
Suppose that Assumption 3.1 and Theorem 3.1 hold. Then

	  
	
Proof:
Combining the descent property (12) and Lemma 3.1 gives

								      
	 	  	 (18)

	 Hence, from Theorem 3.3 we can define that
  Then (18) will be simplified as  

Therefore, the proof is completed. 	

NUMERICAL RESULT

In this section, we use a large number of test problem 
considered in Andrei (2008), Zbigniew (1996) and More 
et al. (1981) in Table 1 to analyse the performance of the 
HBFGS method with the BFGS method. The dimensions 
of the tests range between 2 and 1000. As suggested by 
Hillstrom (1977), for each of the test problems, three initial 
points are used, starting from a point that is closer to the 
solution point and moving to the one that is furtest from 
it. In doing so, it leads us to test the global convergence 
properties and the robustness of our method.
	 The comparison between Algorithm 1 (BFGS) and 
Algorithm 2 (HBFGS) based on the number of iterations 
and cpu-time (second). For the Armijo line search, we 
use s = 1. β = 0.5 and σ = 0.1. In our implementation, the 
programs are all written in Matlab using the Intel Pentium 
® Dual Core of the processor. The stopping criteria that we 
used in both algorithms are  The Euclidean 
norm is used in the convergence test to make these results 
comparable.
	 The performance results will be shown in Figures 
1 and 2, respectively, using the performance profile 
introduced by Dolan and More (2002). The performance 
profile seeks to find how well the solvers perform relative 

FIGURE 1. Performance profile in a log10 scaled based on iteration
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TABLE 1. A list of problem functions

Test problem n–dimensional Initial points
Powell badly scaled 2 (10,10),(100,100),(1000,1000) 
Beale 2 (2,2),(30,30),(700,700)
Biggs Exp6 6 (30,…,30),(50,…,50),(2,…,2)
Chebyquad 4, 6 (10,…,10),(100,…,100),(1000,…,1000)
Colville polynomial 4 (10,…,10),(200,…,200),(500,…,500),
Variably dimensioned 4, 8 (10,…,10),(100,…,100),(700,…,700),(1000,…,1000)
Freudenstein and Roth 2 (2,2),(10,10),(200,200) 
Goldstein price polynomial 2 (10,10),(100,100),(1000,1000) 
Himmelblau 2 (200,200),(500,500),(1000,1000) 
Penalty 1 2, 4 (10,…,10),(100,…,100),(1000,…,1000) 
Extended powell singular 4, 8 (2,…,2),(20,…,20),(150,…,150),(90,…,90)
Rosenbrock 2, 10, 100, 200, 500, 1000 (5,5),(50,50),(1000,1000),(10,…,10),(100,…,100),

(800,…,800),(15,…,15),(125,…,125),(150,…,150),
(210,…,210)

Trigonometric 6, 10, 100, 200, 500, 1000 (10,…,10),(75,…,75),(500,…,500),(100,…,100),
(1000,…,1000),(200,…,200)

Watson 4, 8 (5,…,5),(20,…,20),(200,…,200), (70,…,70)
Six-Hump camel back polynomial 2 (15,15),(100,100),(1000,1000)
Extended shallow 2,4,10,100,200, 500, 1000 (20,20),(70,70),(200,200), (500,…,500),(50,…,50), 

(100,…,100), (350,…,350),(1000,…,1000),
(900,…,900), (150,…,150)

Extended strait 2,4,10,100,200, 500, 1000 (100,100),(300,300),(500,500),(4,…,4),(70,…,70),
(900,…,900),(50,…,50),(400,…,400),(1000,…,1000),
(200,…,200)

Scale 2 (2,2),(30,30),(150,150),
Raydan 1 2 (20,20),(50,50),(200,200), 
Raydan 2 2,4,10,100,200, 500, 1000 (20,20),(70,70),(200,200),(15,…,15),(50,…,50),

(200,…,20),(100,…,100)
Diagonal 3 2 (50,50),(100,100),(200,200)
Cube 2,10,100 (4,4),(40,40),(100,100),(20,…,20),(50,…,50),(80,…,80),

(6,…,6),(55,…,55),(300,…,300),(150,…,150)
De Jong F2 2 (5,5),(50,50),(1000,1000)
PSC 1 2 (5,5),(100,100),(500,500)

FIGURE 2. Performance profile in a log10 scaled based on CPU time
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to the other solvers on a set of problems. In general, P(τ)  
is the fraction of problems with performance ratio τ, thus, 
a solver with high values of P(τ) or one that is located at 
the top right of the figure is preferable.
	 Figures 1 and 2 show that the HBFGS method has the 
best performance since it can solve 95.53% of the test 
problems compared with the BFGS (86.63%). Moreover, 
we can also say that the HBFGS method is the fastest 
solver on approximately 84.36% of the test problems for 
iteration and 85.47% of CPU time. Table 2 shows the global 
characteristics corresponding to these test problems in 
Table 1.
	 We see that the HBFGS is better than BFGS method in 
both characteristics. From Table 2, we can see that the total 
number of iterations is reduced by 65% and the total cpu 
time is 68.8% for HBFGS method. So, we can conclude that 
the HBFGS is much better compare to BFGS method. 

CONCLUSION

We have presented a new hybrid method for solving 
unconstrained optimization problems. The numerical 
results for a small dimension of test problems show 
that the HBFGS method is efficient and robust in solving 
unconstrained optimization problems. The numerical 
results and figures from the programming are reported and 
analysed to show the characters of the proposed method. 
Our further interest is to try the HBFGS method with the 
coefficient of the conjugate gradient methods Fletcher-
Reeves, Hestenes-Steifel and the Liu-Storey coefficient 
for λ.  
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